Thigh-calf contact: does it affect the loading of the knee in the high-flexion range?
نویسندگان
چکیده
Recently, high-flexion knee implants have been developed to provide for a large range of motion (ROM>120 degrees ) after total knee arthroplasty (TKA). Since knee forces typically increase with larger flexion angles, it is commonly assumed that high-flexion knee implants are subjected to larger loads than conventional knee implants. However, most high-flexion studies do not consider thigh-calf contact which occurs during high-flexion activities such as squatting and kneeling. In this study, we hypothesized that thigh-calf contact reduces the knee forces during deep knee flexion as the tibio-femoral load shifts from occurring inside the knee towards the thigh-calf contact interface. Hence, the effect of thigh-calf contact on the knee loading was evaluated using a free body diagram and a finite element model and both the knee forces and polyethylene stresses were analyzed. Thigh-calf contact force characteristics from an earlier study were included and a squatting movement was simulated. In general, we found thigh-calf contact considerably reduced both the knee forces and polyethylene stresses during deep knee flexion. At maximal flexion (155 degrees ), the compressive knee force decreased from 4.89 to 2.90 times the bodyweight (BW) in case thigh-calf contact was included and the polyethylene contact stress at the tibial post decreased from 49.3 to 28.1MPa. Additionally, there was a clear correlation between a subject's thigh and calf circumference and the force reduction at maximal flexion due to thigh-calf contact (R=0.89). The findings presented in this study can be used to optimize the mechanical behavior of high-flexion total knee arthroplasty designs.
منابع مشابه
Thigh-calf contact force measurements in deep knee flexion.
BACKGROUND Knee models often do not contain thigh-calf contact which occurs in deep knee flexion. Thigh-calf contact is expected to reduce muscle forces and thereby affects internal stresses in the knee joint. The purpose of this study was to measure thigh-calf contact forces. Two deep knee flexion activities were selected: squatting and kneeling. METHODS Ten healthy subjects participated in ...
متن کاملKneeling and standing up from a chair as performance-based tests to evaluate knee function in the high-flexion range: a randomized controlled trial comparing a conventional and a high-flexion TKA design
BACKGROUND We compared the functional outcome between conventional and high-flexion total knee arthroplasty (TKA) using kneeling and sit-to-stand tests at 1 year post-operative. In addition, the patient's daily functioning, pain and satisfaction were quantified using questionnaires. METHODS We randomly assigned 56 patients to receive either a conventional or a high-flexion TKA. Primary outcom...
متن کاملForces and moments on the knee during kneeling and squatting.
Euler angle decomposition and inverse dynamics were used to determine the knee angles and net forces and moments applied to the tibia during kneeling and squatting with and without kneepads for 10 subjects in four postures: squatting (Squat), kneeling on the right knee (One Knee), bilateral kneeling near full flexion (Near Full) and bilateral kneeling near 90° flexion (Near 90). Kneepads affect...
متن کاملDoes high-flexion total knee arthroplasty promote early loosening of the femoral component?
High-flexion knee replacements have been developed to accommodate a large range of motion (RoM > 120°). Knee implants that allow for higher flexion may be more sensitive to femoral loosening as the knee load is relatively high during deep knee flexion, which could result in an increased failure potential at the implant-cement interface of the femoral component. A 3D finite element knee model wa...
متن کاملCalculation of the Forces Acting on the Knee Joint When Rising from Kneeling Positions (Effects of the Leg Alignment and the Arm Assistance on the Knee Joint Forces)
Knee joint forces are available by in vivo measurement using an instrumented knee prosthesis for small to moderate knee flexion but not for high flexion yet. We created a 2D mathematical model of the lower limb incorporating several new features such as a patello-femoral mechanism, a thigh-calf contact at high knee flexion and co-contracting muscles' force ratio, then used it to determine knee ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2009